1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <signal.h>
#include <errno.h>

/* Simple error handling functions */

#define handle_error_en(en, msg) \
do { errno = en; perror(msg); exit(EXIT_FAILURE); } while (0)

static void *
sig_thread(void *arg)
{
printf("yyyyy, thread id is: %ld\n", pthread_self());
sigset_t aset;
int s, sig;
sigemptyset(&aset);
sigaddset(&aset, SIGQUIT);
sigaddset(&aset, SIGUSR1);
//s = pthread_sigmask(SIG_BLOCK, &aset, NULL);
sigset_t *set = (sigset_t *)arg;

for (;;) {
s = sigwait(set, &sig);
if (s != 0)
handle_error_en(s, "sigwait");
printf("Signal handling thread got signal %d\n", sig);
}
}

static void handler(int arg)
{
printf("xxxxx, thread id is: %ld\n", pthread_self());
}

int main(int argc, char *argv[])
{
pthread_t thread;
sigset_t set;
int s;

/* Block SIGINT; other threads created by main() will inherit
* a copy of the signal mask. */

signal(SIGQUIT, handler);
// if (s != 0)
// handle_error_en(s, "pthread_sigmask");

s = pthread_create(&thread, NULL, &sig_thread, (void *)&set);
sigemptyset(&set);
sigaddset(&set, SIGQUIT);
sigaddset(&set, SIGUSR1);
//s = pthread_sigmask(SIG_BLOCK, &set, NULL);
if (s != 0)
handle_error_en(s, "pthread_create");
printf("sub thread with id: %ld\n", thread);
/* Main thread carries on to create other threads and/or do
* other work */

pause(); /* Dummy pause so we can test program */
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#include <pthread.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <wait.h>

pthread_mutex_t mutex;

void* another( void* arg )
{
printf( "in child thread, lock the mutex\n" );
pthread_mutex_lock( &mutex );
sleep( 5 );
pthread_mutex_unlock( &mutex );
}

void prepare()
{
pthread_mutex_lock( &mutex );
}

void infork()
{
pthread_mutex_unlock( &mutex );
}

int main()
{
pthread_mutex_init( &mutex, NULL );
pthread_t id;
pthread_create( &id, NULL, another, NULL );
//pthread_atfork( prepare, infork, infork );
sleep( 1 );
int pid = fork();
if( pid < 0 )
{
pthread_join( id, NULL );
pthread_mutex_destroy( &mutex );
return 1;
}
else if( pid == 0 )
{
printf( "I anm in the child, want to get the lock\n" );
pthread_mutex_lock( &mutex );
printf( "I can not run to here, oop...\n" );
pthread_mutex_unlock( &mutex );
exit( 0 );
}
else
{
pthread_mutex_unlock( &mutex );
wait( NULL );
}
pthread_join( id, NULL );
pthread_mutex_destroy( &mutex );
return 0;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#ifndef LOCKER_H
#define LOCKER_H

#include <exception>
#include <pthread.h>
#include <semaphore.h>

class sem
{
public:
sem()
{
if (sem_init(&m_sem, 0, 0) != 0)
{
throw std::exception();
}
}
~sem()
{
sem_destroy(&m_sem);
}
bool wait()
{
return sem_wait(&m_sem) == 0;
}
bool post()
{
return sem_post(&m_sem) == 0;
}

private:
sem_t m_sem;
};

class locker
{
public:
locker()
{
if (pthread_mutex_init(&m_mutex, NULL) != 0)
{
throw std::exception();
}
}
~locker()
{
pthread_mutex_destroy(&m_mutex);
}
bool lock()
{
return pthread_mutex_lock(&m_mutex) == 0;
}
bool unlock()
{
return pthread_mutex_unlock(&m_mutex) == 0;
}

private:
pthread_mutex_t m_mutex;
};

class cond
{
public:
cond()
{
if (pthread_mutex_init(&m_mutex, NULL) != 0)
{
throw std::exception();
}
if (pthread_cond_init(&m_cond, NULL) != 0)
{
pthread_mutex_destroy(&m_mutex);
throw std::exception();
}
}
~cond()
{
pthread_mutex_destroy(&m_mutex);
pthread_cond_destroy(&m_cond);
}
bool wait()
{
int ret = 0;
pthread_mutex_lock(&m_mutex);
ret = pthread_cond_wait(&m_cond, &m_mutex);
pthread_mutex_unlock(&m_mutex);
return ret == 0;
}
bool signal()
{
return pthread_cond_signal(&m_cond) == 0;
}

private:
pthread_mutex_t m_mutex;
pthread_cond_t m_cond;
};

#endif


int main()
{

return 0;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#include <pthread.h>
#include <unistd.h>
#include <stdio.h>

int a = 0;
int b = 0;
pthread_mutex_t mutex_a;
pthread_mutex_t mutex_b;

void* another(void* arg)
{
pthread_mutex_lock(&mutex_b);
printf("in child thread, got mutex b, waiting for mutex a\n");
sleep(5);
++b;
pthread_mutex_lock(&mutex_a);
b += a++;
pthread_mutex_unlock(&mutex_a);
pthread_mutex_unlock(&mutex_b);
pthread_exit(NULL);
}

int main()
{
pthread_t id;

pthread_mutex_init(&mutex_a, NULL);
pthread_mutex_init(&mutex_b, NULL);
pthread_create(&id, NULL, another, NULL);

pthread_mutex_lock(&mutex_a);
printf("in parent thread, got mutex a, waiting for mutex b\n");
sleep(5);
++a;
pthread_mutex_lock(&mutex_b);
a += b++;
pthread_mutex_unlock(&mutex_b);
pthread_mutex_unlock(&mutex_a);

pthread_join(id, NULL);
pthread_mutex_destroy(&mutex_a);
pthread_mutex_destroy(&mutex_b);
return 0;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <assert.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <stdlib.h>
#include <sys/epoll.h>
#include <signal.h>
#include <sys/wait.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>

#define USER_LIMIT 5
#define BUFFER_SIZE 1024
#define FD_LIMIT 65535
#define MAX_EVENT_NUMBER 1024
#define PROCESS_LIMIT 65536

// 链接器加入命令 -lrt,解决编译不过的问题


struct client_data
{
sockaddr_in address;
int connfd;
pid_t pid;
int pipefd[2];
};

static const char* shm_name = "/my_shm";
int sig_pipefd[2];
int epollfd;
int listenfd;
int shmfd;
char* share_mem = 0;
client_data* users = 0;
int* sub_process = 0;
int user_count = 0;
bool stop_child = false;

int setnonblocking(int fd)
{
int old_option = fcntl(fd, F_GETFL);
int new_option = old_option | O_NONBLOCK;
fcntl(fd, F_SETFL, new_option);
return old_option;
}

void addfd(int epollfd, int fd)
{
epoll_event event;
event.data.fd = fd;
event.events = EPOLLIN | EPOLLET;
epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &event);
setnonblocking(fd);
}

void sig_handler(int sig)
{
int save_errno = errno;
int msg = sig;
send(sig_pipefd[1], (char*)&msg, 1, 0);
errno = save_errno;
}

void addsig(int sig, void(*handler)(int), bool restart = true)
{
struct sigaction sa;
memset(&sa, '\0', sizeof(sa));
sa.sa_handler = handler;
if (restart)
{
sa.sa_flags |= SA_RESTART;
}
sigfillset(&sa.sa_mask);
assert(sigaction(sig, &sa, NULL) != -1);
}

void del_resource()
{
close(sig_pipefd[0]);
close(sig_pipefd[1]);
close(listenfd);
close(epollfd);
shm_unlink(shm_name);
delete[] users;
delete[] sub_process;
}

void child_term_handler(int sig)
{
stop_child = true;
}

int run_child(int idx, client_data* users, char* share_mem)
{
epoll_event events[MAX_EVENT_NUMBER];
int child_epollfd = epoll_create(5);
assert(child_epollfd != -1);
int connfd = users[idx].connfd;
addfd(child_epollfd, connfd);
int pipefd = users[idx].pipefd[1];
addfd(child_epollfd, pipefd);
int ret;
addsig(SIGTERM, child_term_handler, false);

while (!stop_child)
{
int number = epoll_wait(child_epollfd, events, MAX_EVENT_NUMBER, -1);
if ((number < 0) && (errno != EINTR))
{
printf("epoll failure\n");
break;
}

for (int i = 0; i < number; i++)
{
int sockfd = events[i].data.fd;
if ((sockfd == connfd) && (events[i].events & EPOLLIN))
{
memset(share_mem + idx * BUFFER_SIZE, '\0', BUFFER_SIZE);
ret = recv(connfd, share_mem + idx * BUFFER_SIZE, BUFFER_SIZE - 1, 0);
if (ret < 0)
{
if (errno != EAGAIN)
{
stop_child = true;
}
}
else if (ret == 0)
{
stop_child = true;
}
else
{
send(pipefd, (char*)&idx, sizeof(idx), 0);
}
}
else if ((sockfd == pipefd) && (events[i].events & EPOLLIN))
{
int client = 0;
ret = recv(sockfd, (char*)&client, sizeof(client), 0);
if (ret < 0)
{
if (errno != EAGAIN)
{
stop_child = true;
}
}
else if (ret == 0)
{
stop_child = true;
}
else
{
send(connfd, share_mem + client * BUFFER_SIZE, BUFFER_SIZE, 0);
}
}
else
{
continue;
}
}
}

close(connfd);
close(pipefd);
close(child_epollfd);
return 0;
}

int main(int argc, char* argv[])
{
if (argc <= 2)
{
printf("usage: %s ip_address port_number\n", basename(argv[0]));
return 1;
}
const char* ip = argv[1];
int port = atoi(argv[2]);

int ret = 0;
struct sockaddr_in address;
bzero(&address, sizeof(address));
address.sin_family = AF_INET;
inet_pton(AF_INET, ip, &address.sin_addr);
address.sin_port = htons(port);

listenfd = socket(PF_INET, SOCK_STREAM, 0);
assert(listenfd >= 0);

ret = bind(listenfd, (struct sockaddr*)&address, sizeof(address));
assert(ret != -1);

ret = listen(listenfd, 5);
assert(ret != -1);

user_count = 0;
users = new client_data[USER_LIMIT + 1];
sub_process = new int[PROCESS_LIMIT];
for (int i = 0; i < PROCESS_LIMIT; ++i)
{
sub_process[i] = -1;
}

epoll_event events[MAX_EVENT_NUMBER];
epollfd = epoll_create(5);
assert(epollfd != -1);
addfd(epollfd, listenfd);

ret = socketpair(PF_UNIX, SOCK_STREAM, 0, sig_pipefd);
assert(ret != -1);
setnonblocking(sig_pipefd[1]);
addfd(epollfd, sig_pipefd[0]);

addsig(SIGCHLD, sig_handler);
addsig(SIGTERM, sig_handler);
addsig(SIGINT, sig_handler);
addsig(SIGPIPE, SIG_IGN);
bool stop_server = false;
bool terminate = false;

shmfd = shm_open(shm_name, O_CREAT | O_RDWR, 0666);
assert(shmfd != -1);
ret = ftruncate(shmfd, USER_LIMIT * BUFFER_SIZE);
assert(ret != -1);

share_mem = (char*)mmap(NULL, USER_LIMIT * BUFFER_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, shmfd, 0);
assert(share_mem != MAP_FAILED);
close(shmfd);

while (!stop_server)
{
int number = epoll_wait(epollfd, events, MAX_EVENT_NUMBER, -1);
if ((number < 0) && (errno != EINTR))
{
printf("epoll failure\n");
break;
}

for (int i = 0; i < number; i++)
{
int sockfd = events[i].data.fd;
if (sockfd == listenfd)
{
struct sockaddr_in client_address;
socklen_t client_addrlength = sizeof(client_address);
int connfd = accept(listenfd, (struct sockaddr*)&client_address, &client_addrlength);
if (connfd < 0)
{
printf("errno is: %d\n", errno);
continue;
}
if (user_count >= USER_LIMIT)
{
const char* info = "too many users\n";
printf("%s", info);
send(connfd, info, strlen(info), 0);
close(connfd);
continue;
}
users[user_count].address = client_address;
users[user_count].connfd = connfd;
ret = socketpair(PF_UNIX, SOCK_STREAM, 0, users[user_count].pipefd);
assert(ret != -1);
pid_t pid = fork();
if (pid < 0)
{
close(connfd);
continue;
}
else if (pid == 0)
{
close(epollfd);
close(listenfd);
close(users[user_count].pipefd[0]);
close(sig_pipefd[0]);
close(sig_pipefd[1]);
run_child(user_count, users, share_mem);
munmap((void*)share_mem, USER_LIMIT * BUFFER_SIZE);
exit(0);
}
else
{
close(connfd);
close(users[user_count].pipefd[1]);
addfd(epollfd, users[user_count].pipefd[0]);
users[user_count].pid = pid;
sub_process[pid] = user_count;
user_count++;
}
}
else if ((sockfd == sig_pipefd[0]) && (events[i].events & EPOLLIN))
{
int sig;
char signals[1024];
ret = recv(sig_pipefd[0], signals, sizeof(signals), 0);
if (ret == -1)
{
continue;
}
else if (ret == 0)
{
continue;
}
else
{
for (int i = 0; i < ret; ++i)
{
switch (signals[i])
{
case SIGCHLD:
{
pid_t pid;
int stat;
while ((pid = waitpid(-1, &stat, WNOHANG)) > 0)
{
int del_user = sub_process[pid];
sub_process[pid] = -1;
if ((del_user < 0) || (del_user > USER_LIMIT))
{
printf("the deleted user was not change\n");
continue;
}
epoll_ctl(epollfd, EPOLL_CTL_DEL, users[del_user].pipefd[0], 0);
close(users[del_user].pipefd[0]);
users[del_user] = users[--user_count];
sub_process[users[del_user].pid] = del_user;
printf("child %d exit, now we have %d users\n", del_user, user_count);
}
if (terminate && user_count == 0)
{
stop_server = true;
}
break;
}
case SIGTERM:
case SIGINT:
{
printf("kill all the clild now\n");
//addsig( SIGTERM, SIG_IGN );
//addsig( SIGINT, SIG_IGN );
if (user_count == 0)
{
stop_server = true;
break;
}
for (int i = 0; i < user_count; ++i)
{
int pid = users[i].pid;
kill(pid, SIGTERM);
}
terminate = true;
break;
}
default:
{
break;
}
}
}
}
}
else if (events[i].events & EPOLLIN)
{
int child = 0;
ret = recv(sockfd, (char*)&child, sizeof(child), 0);
printf("read data from child accross pipe\n");
if (ret == -1)
{
continue;
}
else if (ret == 0)
{
continue;
}
else
{
for (int j = 0; j < user_count; ++j)
{
if (users[j].pipefd[0] != sockfd)
{
printf("send data to child accross pipe\n");
send(users[j].pipefd[0], (char*)&child, sizeof(child), 0);
}
}
}
}
}
}

del_resource();
return 0;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#ifndef LST_TIMER
#define LST_TIMER

#include <time.h>

#define BUFFER_SIZE 64
class util_timer;
struct client_data
{
sockaddr_in address;
int sockfd;
char buf[ BUFFER_SIZE ];
util_timer* timer;
};

class util_timer
{
public:
util_timer() : prev( NULL ), next( NULL ){}

public:
time_t expire;
void (*cb_func)( client_data* );
client_data* user_data;
util_timer* prev;
util_timer* next;
};

class sort_timer_lst
{
public:
sort_timer_lst() : head( NULL ), tail( NULL ) {}
~sort_timer_lst()
{
util_timer* tmp = head;
while( tmp )
{
head = tmp->next;
delete tmp;
tmp = head;
}
}
void add_timer( util_timer* timer )
{
if( !timer )
{
return;
}
if( !head )
{
head = tail = timer;
return;
}
if( timer->expire < head->expire )
{
timer->next = head;
head->prev = timer;
head = timer;
return;
}
add_timer( timer, head );
}
void adjust_timer( util_timer* timer )
{
if( !timer )
{
return;
}
util_timer* tmp = timer->next;
if( !tmp || ( timer->expire < tmp->expire ) )
{
return;
}
if( timer == head )
{
head = head->next;
head->prev = NULL;
timer->next = NULL;
add_timer( timer, head );
}
else
{
timer->prev->next = timer->next;
timer->next->prev = timer->prev;
add_timer( timer, timer->next );
}
}
void del_timer( util_timer* timer )
{
if( !timer )
{
return;
}
if( ( timer == head ) && ( timer == tail ) )
{
delete timer;
head = NULL;
tail = NULL;
return;
}
if( timer == head )
{
head = head->next;
head->prev = NULL;
delete timer;
return;
}
if( timer == tail )
{
tail = tail->prev;
tail->next = NULL;
delete timer;
return;
}
timer->prev->next = timer->next;
timer->next->prev = timer->prev;
delete timer;
}
void tick()
{
if( !head )
{
return;
}
printf( "timer tick\n" );
time_t cur = time( NULL );
util_timer* tmp = head;
while( tmp )
{
if( cur < tmp->expire )
{
break;
}
tmp->cb_func( tmp->user_data );
head = tmp->next;
if( head )
{
head->prev = NULL;
}
delete tmp;
tmp = head;
}
}

private:
void add_timer( util_timer* timer, util_timer* lst_head )
{
util_timer* prev = lst_head;
util_timer* tmp = prev->next;
while( tmp )
{
if( timer->expire < tmp->expire )
{
prev->next = timer;
timer->next = tmp;
tmp->prev = timer;
timer->prev = prev;
break;
}
prev = tmp;
tmp = tmp->next;
}
if( !tmp )
{
prev->next = timer;
timer->prev = prev;
timer->next = NULL;
tail = timer;
}

}

private:
util_timer* head;
util_timer* tail;
};

#endif
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <assert.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>

int main(int argc, char* argv[])
{
if (argc <= 2)
{
printf("usage: %s ip_address port_number\n", basename(argv[0]));
return 1;
}
const char* ip = argv[1];
int port = atoi(argv[2]);

struct sockaddr_in address = {0};
address.sin_family = AF_INET;
inet_pton(AF_INET, ip, &address.sin_addr);
address.sin_port = htons(port);

int sock = socket(PF_INET, SOCK_STREAM, 0);
assert(sock >= 0);

int ret = bind(sock, (struct sockaddr*)&address, sizeof(address));
assert(ret != -1);

ret = listen(sock, 5);
assert(ret != -1);

struct sockaddr_in client;
socklen_t client_addrlength = sizeof(client);
int connfd = accept(sock, (struct sockaddr*)&client, &client_addrlength);
if (connfd < 0)
{
printf("errno is: %d\n", errno);
}
else
{
int pipefd[2];
assert(ret != -1);
ret = pipe(pipefd);
// splice两个文件描述符之间移动数据(零拷贝)
ret = splice(connfd, NULL, pipefd[1], NULL, 32768, SPLICE_F_MORE | SPLICE_F_MOVE);
assert(ret != -1);
ret = splice(pipefd[0], NULL, connfd, NULL, 32768, SPLICE_F_MORE | SPLICE_F_MOVE);
assert(ret != -1);
close(connfd);
}

close(sock);
return 0;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <assert.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <fcntl.h>

#define BUFFER_SIZE 1024
static const char* status_line[2] = { "200 OK", "500 Internal server error" };

int main(int argc, char* argv[])
{
if (argc <= 3)
{
printf("usage: %s ip_address port_number filename\n", basename(argv[0]));
return 1;
}
const char* ip = argv[1];
int port = atoi(argv[2]);
const char* file_name = "/opt/test.txt";

struct sockaddr_in address = {0};
address.sin_family = AF_INET;
inet_pton(AF_INET, ip, &address.sin_addr);
address.sin_port = htons(port);

int sock = socket(PF_INET, SOCK_STREAM, 0);
assert(sock >= 0);

int ret = bind(sock, (struct sockaddr*)&address, sizeof(address));
assert(ret != -1);

ret = listen(sock, 5);
assert(ret != -1);

struct sockaddr_in client;
socklen_t client_addrlength = sizeof(client);
int connfd = accept(sock, (struct sockaddr*)&client, &client_addrlength);
if (connfd < 0)
{
printf("errno is: %d\n", errno);
}
else
{
char header_buf[BUFFER_SIZE];
memset(header_buf, '\0', BUFFER_SIZE);
char* file_buf;
struct stat file_stat;
bool valid = true;
int len = 0;
if (stat(file_name, &file_stat) < 0) // 文件路径不存在
{
int nError = errno;
valid = false;
}
else
{
if (S_ISDIR(file_stat.st_mode))
{
valid = false;
}
else if (file_stat.st_mode & S_IROTH)
{
int fd = open(file_name, O_RDONLY);
file_buf = new char[file_stat.st_size + 1];
memset(file_buf, '\0', file_stat.st_size + 1);
if (read(fd, file_buf, file_stat.st_size) < 0)
{
valid = false;
}
}
else
{
valid = false;
}
}

if (valid)
{
ret = snprintf(header_buf, BUFFER_SIZE - 1, "%s %s\r\n", "HTTP/1.1", status_line[0]);
len += ret;
ret = snprintf(header_buf + len, BUFFER_SIZE - 1 - len,
"Content-Length: %d\r\n", file_stat.st_size);
len += ret;
ret = snprintf(header_buf + len, BUFFER_SIZE - 1 - len, "%s", "\r\n");
struct iovec iv[2];
iv[0].iov_base = header_buf;
iv[0].iov_len = strlen(header_buf);
iv[1].iov_base = file_buf;
iv[1].iov_len = file_stat.st_size;
ret = writev(connfd, iv, 2); // 多块分散的内存数据一并写入文件描述符中
}
else
{
ret = snprintf(header_buf, BUFFER_SIZE - 1, "%s %s\r\n", "HTTP/1.1", status_line[1]);
len += ret;
ret = snprintf(header_buf + len, BUFFER_SIZE - 1 - len, "%s", "\r\n");
send(connfd, header_buf, strlen(header_buf), 0);
}
close(connfd);
delete[] file_buf;
}

close(sock);
return 0;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <assert.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/sendfile.h>

int main(int argc, char* argv[])
{
if (argc <= 3)
{
printf("usage: %s ip_address port_number filename\n", basename(argv[0]));
return 1;
}
const char* ip = argv[1];
int port = atoi(argv[2]);
const char* file_name = "/opt/test.txt";

int filefd = open(file_name, O_RDONLY);
assert(filefd > 0);
struct stat stat_buf;
fstat(filefd, &stat_buf);

struct sockaddr_in address = {0};
address.sin_family = AF_INET;
inet_pton(AF_INET, ip, &address.sin_addr);
address.sin_port = htons(port);

int sock = socket(PF_INET, SOCK_STREAM, 0);
assert(sock >= 0);

int ret = bind(sock, (struct sockaddr*)&address, sizeof(address));
assert(ret != -1);

ret = listen(sock, 5);
assert(ret != -1);

struct sockaddr_in client;
socklen_t client_addrlength = sizeof(client);
int connfd = accept(sock, (struct sockaddr*)&client, &client_addrlength);
if (connfd < 0)
{
printf("errno is: %d\n", errno);
}
else
{
// sendfile在两个文件描述符之间直接传递数据
sendfile(connfd, filefd, NULL, stat_buf.st_size);
close(connfd);
}

close(sock);
return 0;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#include <sys/sem.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

union semun
{
int val;
struct semid_ds* buf;
unsigned short int* array;
struct seminfo* __buf;
};

void pv(int sem_id, int op)
{
struct sembuf sem_b;
sem_b.sem_num = 0;
sem_b.sem_op = op;
sem_b.sem_flg = SEM_UNDO;
semop(sem_id, &sem_b, 1);
}

int main(int argc, char* argv[])
{
int sem_id = semget(IPC_PRIVATE, 1, 0666);

union semun sem_un;
sem_un.val = 1;
semctl(sem_id, 0, SETVAL, sem_un);

pid_t id = fork();
if (id < 0)
{
return 1;
}
else if (id == 0)
{
printf("child try to get binary sem\n");
pv(sem_id, -1);
printf("child get the sem and would release it after 5 seconds\n");
sleep(5);
pv(sem_id, 1);
exit(0);
}
else
{
printf("parent try to get binary sem\n");
pv(sem_id, -1);
printf("parent get the sem and would release it after 5 seconds\n");
sleep(5);
pv(sem_id, 1);
}

waitpid(id, NULL, 0);
semctl(sem_id, 0, IPC_RMID, sem_un);
return 0;
}